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EXPERIMENTAL EQUATIONS OF STATE FOR 
SOME ORGANIC LIQUIDS BETWEEN 273 AND 

333K AND UP TO 280MPa 

T. F. SUN*, J. A. SCHOUTEN, P. J. KORTBEEK and S. N. BISWAS 

Van der Wads Laboratory f ,  University of Amsterdam, The Netherlands. 

(Received 22 July 1989) 

Five non-linear and three polynomial isothermal equations of state for liquids have been tested for their 
performance in describing the data of the density and the isothermal compressibility of benzene and 
cyclohexane from 288 to 323 K up to the melting pressures, and of methanol and ethanol between 273 
and 333 K up to 280 MPa. It is found that the best representation is given by an expansion in temperature 
and density and the second best by the Usual Tait equation. The coefficients of these two equations for 
the four organic liquids are obtained by fitting the experimental data by a least squares analysis. 

K E Y  WORDS: Equation of state, organic liquids, sound velocity, high pressure. 

1 INTRODUCTION 

A number of empirical and semi-empirical equations of state have been proposed to 
describe the volumetric behaviour of liquids as a function of pressure or temperature. 
These equations are very useful not only for the purpose of smoothing and interpola- 
tion, but also for determining derived thermodynamic functions which require 
differentiation and integration of an appropriate equation of state. It is, therefore, 
considered worthwhile to examine in how far these equations of state can describe 
liquid densities over a wider range of pressure and temperature and whether a certain 
type of equation should be preferred to others for obtaining the best performance 
for a particular substance. 

The work described in this paper is stimulated by our recent ultrasonic measure- 
ments of the sound velocity in benzene, cyclohexane’, methanol’ and ethanol3 at 
elevated pressures from which liquid densities, with accuracies comparable to those 
obtained from direct measurements, can be extracted following a method initiated 
by Davis and Gordon3q4. In view of the simplicity and rapidity of the experimental 
procedure, our ultrasonic measurements provide an extensive amount of data points 
covering a wider range of pressures and temperatures than those of previously direct 
measurements. Ail these factors are favourable for a critical examination of the 
existing equations of state for liquids. 

* Leave of absence from Harbin Institute of Technology, Harbin. The People’s Republic of China. 
t The 385th publication of the Van der Waals Laboratory. 
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2 NONLINEAR AND POLYNOMIAL EQUATION 

The present analysis is restricted to  those isothermal equations of state which were 
frequently used in the past for describing liquid densities at elevated pressures. 
Following McDonald’, these equations have been classified under separate groups, 
namely, nonlinear equations and polynomial equations. In this work, altogether five 
nonlinear and three polynomial equations have been critically examined for their 
performance in describing our density data for four organic liquids as a function of 
pressure, namely benzene, cyclohexane, methanol and ethanol. These are mostly two 
or three parameter equations in which the parameters are related to the isothermal 
bulk modules K T ,  defined as 

and its pressure derivatives 

The isothermal bulk modules is related to the isothermal compressibility BT by the 
relation K ,  = p T 1 .  

The five non-linear equations include the well-known Usual Tait equation, the 
quadratic secant modules equation, the Murnaghan equation and the two second 
order equations SOE, and SOE,. These are presented in Table 1. The three 
polynomial equations, namely, the third degree Davis-Gordon equation in which 
the pressure p is expressed as a polynomial in reduced density, another density 
expansion and a pressure expansion of the density, are also presented in Table 1. 
The relation of parameters A,  B and C with the quantities KT,, K;, and K’;,, can 
easily be derived’. It should be pointed out here that, although the third order density 
expansion (3DEE) and the pressure expansion (3PEE) have four parameters A,  B, C ,  
and D as indicated in Table 1, they are essentially the same as those of the three 
parameter equations if the constant terms ( A )  in these equations are considered to 
be zero-pressure values. 

The parameters appear nonlinearly in most of the equations of state presented in 
Table 1. In order to evaluate the parameters of these equations, an iteration 
procedure, such as the Newton-Raphsonk method for sets of non-linear equations, 
is generally used. Normally, this method gives a rapid convergence only if the choice 
of the initial values A, ,  B ,  and C, are very close to the true values A ,  B and C. 
However, it is difficult to obtain good initial values, in particular for a three parameter 
nonlinear equation. Therefore, we have followed a method, which turns out to be 
better than the Newton-Raphson method and which is described in the appendix. 
Extensive computations have shown that this method is capable of giving rapid 
convergence compared to the previous method and the initial values should only be 
within an order of magnitude of the true values. 
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Table 1 
A ,  B, C and D are coefficients and p, is the density at zero pressure. 

Equation name Acronym Form 

Nonlinear and polynomials equations of state for liquids. In the following, 

Usual Tait 
Quadratic Secant 

Modulus 
Murnaghan 
Second-order 0 
Second-order I 
Third-degree 

Third-degree 

Third-degree 

Davis-Gordon 

density expansion 

pressure expansion 

UTE 
QSME 

ME 
SOE, 
SOE, 
3DGE 

3DEE 

3PEE 

P = P , / C ~  - A M l  + Bdl  

P = Po(1 + APY 
P = Po expb/(A + BPI1 
P = P,"I + AP)l(l + BP)l' 

where x = ( P  - po) /p0 

p = po (A  + Bp - Cp2)/(A + B p  - 

p = Ax + Ex2 + Cx3 

p = A + Bp + Cp2 + Dp3 

p = A + B p  + Cp2 + Dp' 

CP2 - P )  

3 ANALYSIS AND RESULTS 

In order to make a comparison between the various equations of state for liquids, a 
least-squares analysis has been carried out to fit both the linear and nonlinear 
equations to the experimental data of the four liquids. The fits are carried out along 
6 isotherms from 298 to 323 K up to melting line for benzene and cyclohexane, along 
7 isotherms from 213 to 333 K up to 280 MPa for methanol, and 8 isotherms from 
193 to 333 K up to 280 MPa for ethanol. The parameters have been determined for 
each temperature separately. It should be mentioned here that for each equation 
applied to a particular liquid, we only present a single value of the deviation which 
is obtained by averaging the absolute standard deviations of all isotherms considered 
for each liquid, the so-called averaged absolute standard deviation, which is useful 
for inter-comparisons between different equations of state. The inter-comparison 
between the various equations is based on the following distinct criteria: 

1) The relative magnitude of the averaged absolute standard deviations of the 
densities as given in Table 2.  As shown, except for the equations SOE, and 3PEE, 

Table2 Averaged absolute standard deviations c x lo4 of the 
least squares fits for the density. The numbers in the brackets 
denotes those of coefficients. 

Benzene Cyclohexane Methanol Ethanol 

UTE (2) 0.42 0.47 1.4 1.6 
QSME(3) 0.42 0.44 1.6 1.3 
M E  (2) 0.65 0.5 1 3.0 2.8 
SOE, (2) 2.0 0.80 9. I 7.8 
SOE, (3) 0.36 0.45 0.51 0.45 
3DGE(3)  0.12 0.1 I 0.20 0.2 I 
3DEE (4) 0.07 0.04 0.14 0.10 
3PEE (4) 0.96 0.26 5.3 4.5 
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the deviations are mostly rather small, namely, about 1 x which is comparable 
to the error in the experimental density3. Therefore, this criterion is not sufficient to 
select the best equation of state for the four liquids. 

2) The relative magnitude of the averaged absolute standard deviations of the 
isothermal compressibility PT ( = l / p ( a p / a p ) , )  which are obtained by differentiating 
each fitted equation with respect to pressure. It is clear that a differentiation procedure 
enlarges the errors considerably so that this criterion is a serious test of the validity 
of the equation of state. However, an inter-comparison between the equation of state 
needs a large number of P T  data. These data are very difficult to obtain from direct 
experiment or from conventional pVT measurements. In contrast, in the present 
study, the values for PT were obtained from previous ultrasonic w0rkl-j using the 
thermodynamic relation: 

where u is the sound velocity, a, is the thermal expansion coefficient at constant 
pressure and C, the specific heat at constant pressure. It can easily be shown (cf. Sun 
et u I . ’ - ~ )  that the largest contribution for the values of PT for these four organic 
compounds comes from the term u-’  which was directly determined so that the 
values of / IT  are very accurate. In Table 3, the magnitude of the averaged absolute 
standard deviation of the isothermal compressibility PT is computed for the four 
liquids. It is shown that the deviations for the PT values are about two orders of 
magnitude larger than those for the densities (cf. Table 2 and Table 3). Furthermore, 
from the comparison of these tables, one may conclude that the two density expansion 
equations (3DEE and 3DGE) are the best. 

3) An important criterion for selecting the best equation of state is to examine 
whether the extrapolated equation predicts the experimental values at high pressure. 
We have chosen some equations to evaluate the parameters by fitting the experi- 
mental density data for each liquid up to half of the maximum experimental pressure 
and subsequently calculated the density in the remaining pressure range. The average 
absolute standard deviation between the experimental and extrapolated values for 
each liquid are recorded in Table 4. Again it turns out that the two density expansion 

Table3 Averaged absolute standard deviations u x 10’ of the 
least square fits for the isothermal compressibility. The numbers 
in the brackets denotes those of coefficients. 

Benzene Cyclohexane Methanol Ethanol 

0.62 
0.8 1 
0.94 
2.4 
0.58 
0.26 
0.13 
1.7 

0.71 
0.89 
0.82 
1.5 
0.65 
0.52 
0.06 
0.66 

1.3 
1.8 
2.2 
6.4 
0.77 
0.18 
0.29 
5.5 

1.5 
1.7 
2.2 
5.2 
0.77 
0.15 
0.22 
4.6 
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Table4 Averaged absolute standard deviations (I x lo4 of the 
least squares fits obtained from the extrapolation procedure. 

Benzene Cyclohexane Methanol Ethanol 

UTE (2) 0.81 I .4 6.4 7.4 
ME (2) 2.4 1 .o 14 14 
3DGE(3) 2.1 2.5 1.7 1.4 
3DEE(4) 0.70 0.12 0.92 0.52 
3PEE (4) 33 7.8 230 190 

equations (3DEE and 3DGE) are the best and these are capable of predicting the 
experimental density data better than 0.02 percent. 

It is interesting to  examine whether the temperature dependence of the density can 
be reproduced by introducing temperature dependent parameters in the equation of 
state. This has been done only for the density expansion which is found to reproduce 
the isothermal data the best and for the Tait equation because of its simplicity. In 
order to introduce the temperature dependent parameters, the two equations are 
written in the forms: 

In both cases, the coefficients Cij, A ,  and B, for the four liquids have been evaluated 
from the experimental data using a least squares analysis. The po is the density at 
p o  = 0.1 MPa and reported previo~sly'-~.  In the case of benzene and cyclohexane, 
the experimental data cover a temperature range between 288 to 323 K and in the 
case of methanol and ethanol a temperature range from 273 to 333 K. It turns out 
that the standard deviation of the fit with Eq. (5) is less than 0.002% and with Eq. 
(6)  is less than 0.01%. The maximum deviations in the two cases do not exceed 
0.005% and 0.05%, respectively. The values of the coefficients C,,, A ,  and B j  are 
tabulated in Tables 5 and 6. 

Table 5 Coefficients A, and B ,  of Eq. (6). 

Benzene Cyclohexane Methanol Ethanol 

A0 0.1422063 0.998 1933 0.5671756 x lo - '  0.6665581 x l o - '  
-0.4056105 x -0.5851701 x l o - *  0.2529665 x lo- '  0.1811811 x lo-' A1 

A2 0.7894467 x 0.9386494 x lo- '  -0.3676869 x -0.2819286 x 
Bo 0.7859517 x lo -*  -0.1071213 0.2161233 x lo- '  0.1829842 x 10-1 
B ,  -0.5935508 x 0.6496628 x -0.1430840 x lo- '  -0.1177928 x lo- '  
B2 0.2281236 x -0.8325112 x 0.3753929 x 0.3207107 x 
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Table 6 Coefficients C ,  of Eq. (5). 

Benzene Cyclohexane Methanol Ethanol 

CIO 
CI I 
c12 

c20 

c2 I 

c2 2 

'30 

'3 I 

c 3 2  

~ ~~~ ~~~ 

0.5680264 x 10' 0.6515981 x 10' 0.3804965 x 10' 

0.2299094 x 0.3084505 x 0.1156877 x l ow4  
0.2550693 x l o - '  0.6172169 x lo- '  0.2439591 x l o - '  

-0.8657760 x -0.2849253 x -0.9973436 x 
0.7542323 x lo-' 0.3508908 x 0.1239069 x 
0.1334041 x -0.1066154 x lo-' 0.3062450 x 

0.1075835 x lo-* -0.1035795 x lo-'  0.1976063 x lo-'' 

-0.2192048 x lo - '  -0.2718745 x lo - '  -0.1280360 x l o - '  

-0.7192519 x 0.6708949 x -0.6541676 x lo- '  

0.3914969 x 10' 

0.1 109424 x 
0.2478901 x lo - '  

-0.9363383 x 
0.1116134 x 
0.2507466 x 

-0.1272398 x l o - '  

-0.2239760 x lo-' 
-0.4012650 x lo- ' '  

4 CONCLUSIONS 

By using several criteria, namely the relative magnitudes of the standard deviations 
of the density and isothermal compressibility and the deviations of the extrapolated 
densities from the experimental values, one may draw the following conclusions: 

1) Of all the equations of state for the organic liquids, the density expansion 
equation is the best for describing the pVT and thermodynamic properties of these 
liquids. 

2) The well-known and widely used two parameter Tait equation is also good for 
liquid benzene and cyclohexane, but only fair for liquid methanol and ethanol. 
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APPENDIX Procedure for fitting nonlinear equations by least-squares analysis 

We assume to have a known non-linear function with two parameters A and B: 

Y = f(A B, XI. (1) 
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where A and B will be determined from fitting the experimental data by a least- 
squares analysis. The deviations are defined by 

Ri = K - y i  = x - f ( A ,  B, xi) (2) 
in which i is an integer from 1 to N ( N  is a number of experimental data points), K 
denotes the experimental value, y i  is the value from Eq. (1) corresponding to x i ,  with 
x i  assumed to be exact. We minimize the sum of squares, 

N N 
S = C R? = C [yi - f ( A ,  B, x i ) ] ’ .  (3) 

i =  1 i =  1 

At the minimum, all the partial derivatives d S / d A  
following equations are obtained: 

and dS/dB vanish, from which the 

where C denotes xr= 
Now, we expand the variables A and B of Eqs (4) and (5) around A ,  and B, ,  the 
initial values for A and B, and use A A  = A - A ,  and AB = B - B,.  Therefore, we 
have 

C R i - + x  L L + R i <  dR.  d R .  d’R.) A A + C  (dR,  - - + R i p  dRi d’Ri )  AB = 0 ( 6 )  

C R i L + C  - - + R i p  dRi dRi d 2 R i )  A A + C  (dR.  - - + R i p  dRi A B  = 0. (7)  
aR’ dB ( d A  2B dAnB dB dB dB2 

d R ’  d A  ( d A  d A  a A dB dA dAdB 

This is the well known Newton-Raphson’s method for sets of non-linear equations. 
For given initial values A ,  and B,,  the final results A and B can be found via A A  
and AB by means of Eqs (6) and (7). However, the determination of the solutions of 
A and B needs good initial values A ,  and B, ,  otherwise the solutions diverge. In 
fact, it is very difficult to choose good initial values for a non-linear equation. 

However, it is our experience that in practice the solution can easily be found, if 
the second derivative terms are omitted from Eqs (6) and (7) and then these become 

dRi  dR, dR,  dRi dRi  
C R i - + I - -  A A + C - -  A B = O  dA ( d A  d A )  ( d B  d A )  

dRi dRi dRi dRi dRi 
dB ( d A  d B )  ( d B  d B )  C R i - + + - -  A A + C - -  A B = O .  (9) 

It turns out that the solutions of Eqs (8) and (9) are equal to those of Eqs (6)  and 
(7), but the initial values for solving Eqs (8) and (9) are more easily chosen. 

The principle can also be applied to non-linear equations with 3 parameters. 
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